Monday, April 7, 2025

Information Processing Finitism, Part II

In my previous post, I explored information processing finitism (IPF), the idea that nothing can essentially causally depend on an infinite amount of information about contingent things.

Since a real-valued parameter, such as mass or coordinate position, contains an infinite amount of information, a dynamics that fits with IPF needs some non-trivial work. One idea is to encode a real-valued parameter r as a countable sequence of more fundamental discrete parameters r1, r2, ... where ri takes its value in some finite set Ri, and then hope that we can make the dynamics be such that each discrete parameter depends only on a finite number of discrete parameters at earlier times.

In the previous post, I noted that if we encode real numbers as Cauchy sequences of rationals with a certain prescribed convergence rate, then we can do something like this, at least for a toy dynamics involving continuous functions on between 0 and 1 inclusive. However, an unhappy feature of the Cauchy encoding is that it’s not unique: a given real number can have multiple Cauchy encodings. This means that on such an account of physical reality, physical reality has more information in it than is expressed in the real numbers that are observable—for the encodings are themselves a part of reality, and not just the real numbers they encode.

So I’ve been wondering if there is some clever encoding method where each real number, at least between 0 and 1, can be uniquely encoded as a countable sequence of discrete parameters such that for every continuous function f from [0,1] to [0,1], the value of each parameter discrete parameter corresponding to of f(x) depends only on a finite number of discrete parameters corresponding to x.

Sadly, the answer is negative. Here’s why.

Lemma. For any nonempty proper subset A of [0,1], there are uncountably many sets of the form f−1[A] where f is a continuous function from [0,1] to [0,1].

Given the lemma, without loss of generality suppose all the parameters are binary. For the ith parameter, let Bi be the subset of [0,1] where the parameter equals 1. Let F be the algebra of subsets of [0,1] generated by the Bi. This is countable. Any information that can be encoded by a finite number of parameters corresponds to a member of F. Suppose that whether f(x) ∈ A for some A ∈ F depends on a finite number of parameters. Then there is a C ∈ F such that x ∈ C iff f(x) ∈ A. Thus, C = f−1[A]. Thus, F is uncountable by the lemma, a contradiction.

Quick sketch of proof of lemma: The easier case is where either A or its complement is non-dense in [0,1]—then piecewise linear f will do the job. If A and its complement are dense, let (an) and (bn) be a sequence decreasing to 0 such that both an and bn are within 1/2n + 2 of 1/2n, but an ∈ A and bn ∉ A. Then for any set U of positive integers, there will be a strictly increasing continuous function fU such that fU(an) = an if n ∈ U and fU(bn) = an if n ∉ U. Note that fU−1[A] contains an if and only if n ∈ A and contains bn if and only if n ∉ A. So for different sets U, fU−1[A] is different, so there are continuum-many sets of the form fU−1[A].

Saturday, April 5, 2025

Information Processing Finitism

When I was trying to work out my intuitions about causal paradoxes of infinity, which eventually led to my formulating the thesis of causal finitism (CF)—that nothing can have an infinite causal history—I toyed with views that involved information. I ended up largely abandoning that approach, partly because of my qualms about the concept of information and perhaps partly because of worries about physics that I will discuss below.

But I still think the alternative, which one might call information processing finitism, is something someone should work out in more detail.

  • [IPF] Nothing with finite informational content can essentially causally depend on anything with infinite informational content.

Here, informational content is by definition contingent. The “essentially” excludes cases where finite informational content depends on a finite part of something with infinite informational content. How exactly the “essentially” is spelled out is one thing I am not clear on as yet.

The main difficulty with IPF is that our physics seems to violate it. The exact current temperature in Waco depends on the exact temperature, pressure and other facts around the world yesterday. Each of the latter facts involves infinite information—temperature is quantified with a real number, and a real number contains infinite information. Note that here IPF and CF may diverge. An advocate of CF can say that the exact current temperature in Waco depends on a finite number of past events such as “yesterday particle n has parameters P”, even if the parameters P involve real numbers that have infinite energy.

One way to escape this difficulty is to assume that our fundamental physics is actually discrete, and the real numbers in our equations are just an approximation. But I don’t want to stick my neck out so far.

Let’s see if we can make IPF work out with a continuous dynamics. We can suppose that metaphysically speaking, an entity’s having a real-valued parameter is constituted by the entity’s having an infinite sequence of discrete parameters, which parameters are more ontologically fundamental than the real-valued parameter.

For instance, by a one-to-one mapping we can assume our real number is strictly between zero and one, and then define it as an infinite decimal sequence 0.b1b2..., specified by an infinite sequence of digits. Unfortunately, then, we have some severe restrictions on what kind of dynamics we can have if we require that each digit of the output depend only on a finite number of digits of the input. For instance, multiplication by 3/4 cannot be defined, because to know whether f(x) starts with 0.24 or 0.25, you’d have to know whether x < 1/3 or x ≥ 1/3, and if the input is 0.333..., then you can’t tell from a finite number of digits which is the case. This kind of problem will occur with any other base.

It would be really nice to find some way of encoding a real number as an infinite sequence of discrete parameters each of which takes on a fixed finite range that escapes this kind of a problem. I am pretty sure this is impossible, but am too tired to prove it right now.

But there is another approach. We can have non-unique (many-to-one) encodings of reals. Here is one such approach, probably not the most natural one. Consider sequences of natural numbers n1, n2, ... such that for all k we have nk ≤ 2k and there exists a real number x between 0 and 1 inclusive with the property that |xnk/2k| ≤ 1/k. Say that such a sequence encodes the real number x. In general, there will be more than one sequence encoding x by this rule.

Then if f is a function from [0,1] to [0,1], if we have a sequence n1, n2, ... encoding the real number x, to generate an acceptable kth term in a sequence encoding f(x), it suffices to know f(x) to within precision 1/2k, and if f is continuous, then we can do that by knowing a finite number of terms in a sequence encoding x (this is because every continuos function on [0,1] is uniformly continuous).

So any continuous dynamics from [0,1] to [0,1] can be handled in this way. The cost is that fundamental reality has degrees of freedom that are unimportant physically—for fundamental reality distinguishes between different sequences encoding the same real x, but the difference has no physical significance.

I don’t know if there is a way to do this with a unique encoding.

Tuesday, April 1, 2025

Mereology, plural quantification and free lunches

It is sometimes claimed that arbitrary mereological fusions and plural quantification are a metaphysical free lunch, just a new way of talking without any deep philosophical (or at least metaphysical) commitments.

I think this is false.

Consider this Axiom of Choice schema for mereology:

  1. If for every x and y such that ϕ(x) and ϕ(y), either x = y or x and y don’t overlap, and if every x such that ϕ(x) has a part y such that ψ(y), then there is a z such that for every x such that ϕ(x), there is common part y of x and z such that ψ(y).

Or this Axiom of Choice schema for pluralities:

  1. If for all xx and yy such that ϕ(xx) and ϕ(yy) either xx and yy are the same or have nothing in common, then there are zz that have exactly one thing in common with every xx such that ϕ(xx).

If arbitrary mereological fusions and plural quantification are a metaphysical free lunch, just a handy way of talking, then whether (1) or (2) is correct is just a verbal question.

But (1) and (2) respectively imply mereological and plural Banach-Tarski paradoxes:

  1. If z is a solid ball made of points, then it has five pairwise non-overlapping parts, of which the first two can be rigidly moved to be pairwise non-overlapping and compose another ball of the same size as z, and the last three can likewise be so moved.

  2. If the xx are the points of a solid ball, then there are aa, bb, cc, dd and ee which have nothing pairwise in common and such that together they make up xx, and there are rigid motions that allow one to move aa and bb into pluralities that have nothing in common but make up a solid ball of the same size as xx and to move cc, dd and ee into pluralities that have nothing in common and make up another solid ball of the same size.

Conversely, assuming ZF set theory is consistent, there is no way to prove (3) and (4) if we do not have some extension to the standard axioms of mereology or plurals like the Axiom of Choice. The reason is that we can model pluralities and mereological objects with sets of points in three-dimensional space, and either (3) or (4) in that setting will imply the Banach-Tarski paradox for sets, while the Banach-Tarski paradox for sets is known not to be provable from ZF set theory without Choice.

But whether (3) or (4) is true is not a purely verbal question.

One reason it’s not a purely verbal question is intuitive. Banach-Tarski is too paradoxical for it or its negation to be a purely verbal thing.

Another is a reason that I gave in a previous post with a similar argument. Whether the Banach-Tarski paradox holds for sets is not a purely verbal question. But assuming that the Axiom of Separation can take formulas involving mereological terminology or plural quantification, each of (3) and (4) implies the Banach-Tarski paradox for sets.