In my previous post, I explored information processing finitism (IPF), the idea that nothing can essentially causally depend on an infinite amount of information about contingent things.
Since a real-valued parameter, such as mass or coordinate position, contains an infinite amount of information, a dynamics that fits with IPF needs some non-trivial work. One idea is to encode a real-valued parameter r as a countable sequence of more fundamental discrete parameters r1, r2, ... where ri takes its value in some finite set Ri, and then hope that we can make the dynamics be such that each discrete parameter depends only on a finite number of discrete parameters at earlier times.
In the previous post, I noted that if we encode real numbers as Cauchy sequences of rationals with a certain prescribed convergence rate, then we can do something like this, at least for a toy dynamics involving continuous functions on between 0 and 1 inclusive. However, an unhappy feature of the Cauchy encoding is that it’s not unique: a given real number can have multiple Cauchy encodings. This means that on such an account of physical reality, physical reality has more information in it than is expressed in the real numbers that are observable—for the encodings are themselves a part of reality, and not just the real numbers they encode.
So I’ve been wondering if there is some clever encoding method where each real number, at least between 0 and 1, can be uniquely encoded as a countable sequence of discrete parameters such that for every continuous function f from [0,1] to [0,1], the value of each parameter discrete parameter corresponding to of f(x) depends only on a finite number of discrete parameters corresponding to x.
Sadly, the answer is negative. Here’s why.
Lemma. For any nonempty proper subset A of [0,1], there are uncountably many sets of the form f−1[A] where f is a continuous function from [0,1] to [0,1].
Given the lemma, without loss of generality suppose all the parameters are binary. For the ith parameter, let Bi be the subset of [0,1] where the parameter equals 1. Let F be the algebra of subsets of [0,1] generated by the Bi. This is countable. Any information that can be encoded by a finite number of parameters corresponds to a member of F. Suppose that whether f(x) ∈ A for some A ∈ F depends on a finite number of parameters. Then there is a C ∈ F such that x ∈ C iff f(x) ∈ A. Thus, C = f−1[A]. Thus, F is uncountable by the lemma, a contradiction.
Quick sketch of proof of lemma: The easier case is where either A or its complement is non-dense in [0,1]—then piecewise linear f will do the job. If A and its complement are dense, let (an) and (bn) be a sequence decreasing to 0 such that both an and bn are within 1/2n + 2 of 1/2n, but an ∈ A and bn ∉ A. Then for any set U of positive integers, there will be a strictly increasing continuous function fU such that fU(an) = an if n ∈ U and fU(bn) = an if n ∉ U. Note that fU−1[A] contains an if and only if n ∈ A and contains bn if and only if n ∉ A. So for different sets U, fU−1[A] is different, so there are continuum-many sets of the form fU−1[A].