Thursday, June 2, 2016

The value of communities

A men's lacrosse team has twice as many members as a basketball team. But that fact does not contribute to making a men's lacrosse team twice as valuable as a basketball team. Likewise, China as a country isn't about 500 times as valuable as Albania just because it is about 500 times as populous. This suggests that an otherwise plausible individualist theory about the value of a community is false: the theory that a community's value resides in the value it gives to individuals. For the kind of value that being on a basketball team confers to its players, being on a lacrosse team confers on twice as many; and the kind of value that being Albanian confers on its members, being Chinese confers on almost 500 times as many people. One possibility is to see the relevant goods as goods of instantiation: it is good that the values of there being a lacrosse team (or at least of a pair of lacrosse teams: a single team being pointless), there being a basketball team (or a pair of them), there being a China and there being an Albania be realized. But I think that isn't quite right. For while changing the rules of basketball to admit twice as many players to a team wouldn't automatically double the community good, doubling the number of basketball teams does seem to significantly increase the community goods by making there be twice as many basketball communities.

In fact, there seem to be three goods in the case of basketball: (a) the good of instantiation of there being basketball teams (and their playing); (b) the community good of each team; and (c) the good for each involved in these communities. Good (a) is unaffected by doubling the number of teams (unless we double from one to two, and thereby make playing possible); good (b) is doubled by doubling the number of teams; good (c) is doubled both by doubling the number of teams and by doubling the team size. Thinking about the behavior of (b) gives us good reason to think that this good does not reduce to the goods of the individuals as such.

But perhaps this reason isn't decisive. For maybe the goods of individuals can overlap, in the way that two Siamese twins seem to be able to share an organ (though the right ontology of shared organs may in the end undercut the analogy), and in such a case the goods shouldn't be counted twice even if they are had twice. For in these cases, perhaps, the numerically same good is had by two or more individuals. If you and I are both friends of John, and John flourishing, then John's flourishing contributes to your and my flourishing, but it doesn't contribute thrice over even though this flourishing is good for three--we should count overall value by goods and not by participants. Maybe. This would be a kind of middle position between the individualist and communitarian pictures of the value of community: there is a single good of type (b), but it is good by being participated in by individuals.

I don't know. I find this stuff deeply puzzling. I have strong ontological intuitions that communities don't really exist (except in a metaphorical way--which may well be importNt) that pull me towards individualist pictures, but then I see these puzzles...

3 comments:

  1. I'm not sure I agree.

    If a poor village had enough money to sponsor one sport, and their choices were a soccer team that would have 25 players or an equestrian team that would have 2, I think they would be wise to take the soccer team. And if a cosmic supervillain were to give us a choice between him destroying Albania and destroying China, it seems we should preserve China. Or maybe he gives us the choice between destroying Albanian polity, memory, and culture, versus the same for China. I still think we preserve China. In all cases, precisely because of the numbers involved.

    Like you, I have the intuition that a lacrosse team is not intrinsically better than a basketball team but I think that is because I am thinking of both qua team, rather than qua aggregates of individuals. That is, each team might have all the virtues of a team, equally excellently. But when I try to operationalize claims about "the value of a team," I find myself asking which would you pay more for, or which would you choose if you could only have one, or similar choices, and then the numbers count.

    ReplyDelete
  2. I think that's right. That's because the soccer team has a lot more of good (c). But it need not have more of good (b). (It may have more of (b), not because of the greater numbers, but there is more complex in-game cooperation on a soccer team than on, say, an equestrian, climbing or fencing team where one's teammates during a game can only cheer and pray. (That might in particular cases be compensated for, however, by the particulars of the out-of-game cooperation within the team--the camaraderie during practices, etc.))

    ReplyDelete
  3. One of the things I had in mind as I was writing this is that there are political contexts where units of different sizes that are at the same level have the same representation. E.g., countries at the UN. And there are cases where something in between proportional and equal representation of regions is found, trying to do justice to both lines of thought. One talks of "regional interests" in such cases. E.g., the two houses of Canadian Parliament.

    ReplyDelete