Thursday, April 17, 2025

Megethology as mathematics and a regress of structuralisms

In his famous “Mathematics is Megethology”, Lewis gives a brilliant reduction of set theory to mereology and plural quantification. A central ingredient of the reduction is a singleton function which assigns to each individual a singleton of which the individual is the only member. Lewis shows that assuming some assumptions on the size of reality (namely, that it’s very big) there exists a singleton function, and that different singleton functions will yield the same set theoretic truths. The result is that the theory is supposed to be structuralist: it doesn’t matter which singleton function one chooses, just as on structuralist theories of natural numbers it doesn’t matter if one uses von Neumann ordinals or Zermelo ordinals or anything else with the same structure. The structuralism counters the obvious objection to Lewis that if you pick out a singleton function, it is implausible that mathematics is the study of that one singleton function, given that any singleton function yields the same structure.

It occurs to me that there is one hole in the structuralism. In order to say “there exists a singleton function”, Lewis needs to quantify over functions. He does this in a brilliant way using recently developed technical tools where ordered pairs of atoms are first defined in terms of unordered pairs and an ordering is defined by a plurality of fusions, relations on atoms are defined next, and so on, until finally we get functions. However, this part can also be done in a multiplicity of ways, and it is not plausible that mathematics is the study of singleton functions in that one sense of function, given that there are many sense of function that yield the same structure.

Now, of course, one might try to give a formal account of what it is for a construction to have the structure of functions, what it is to quantify not over functions but over function-notions, one might say. But I expect a formal account of quantification over function-notions will presumably suffer from exactly the same issue: no one function-notion-notion will appear privileged, and a structuralist will need to find a way to quantify over function-notion-notions.

I suspect this is a general feature with structuralist accounts. Structuralist accounts study things with a common structure, but there are going to be many accounts of common structure that by exactly the same considerations that motivate structuralism require moving to structuralism about structure, and so on. One needs to stop somewhere. Perhaps with an informal and vague notion of structure? But that is not very satisfying for mathematics, the Queen of Rigor.

No comments: