The obvious analysis of “p is known” is:
- There is someone who knows p.
But this obvious analysis doesn’t seem correct, or at least there is an interesting use of “is known” that doesn’t fit (1). Imagine a mathematics paper that says: “The necessary and sufficient conditions for q are known (Smith, 1967).” But what if the conditions are long and complicated, so that no one can keep them all in mind? What if no one who read Smith’s 1967 paper remembers all the conditions? Then no one knows the conditions, even though it is still true that the conditions “are known”.
Thus, (1) is not necessary for a proposition to be known. Nor is this a rare case. I expect that more than half of the mathematics articles from half a century ago contain some theorem or at least lemma that is known but which no one knows any more.
I suspect that (1) is not sufficient either. Suppose Alice is dying of thirst on a desert island. Someone, namely Alice, knows that she is dying of thirst, but it doesn’t seem right to say that it is known that she is dying of thirst.
So if it is neither necessary nor sufficient for p to be known that someone knows p, what does it mean to say that p is known? Roughly, I think, it has something to do with accessibility. Very roughly:
- Somebody has known p, and the knowledge is accessible to anyone who has appropriate skill and time.
It’s really hard to specify the appropriateness condition, however.
Does all this matter?
I suspect so. There is a value to something being known. When we talk of scientists advancing “human knowledge”, it is something like this “being known” that we are talking about.
Imagine that a scientist discovers p. She presents p at a conference where 20 experts learn p from her. Then she publishes it in a journal when 100 more people learn it. Then a Youtuber picks it up and now a million people know it.
If we understand the value of knowledge as something like the sum of epistemic utilities across humankind, then the successive increments in value go like this: first, we have a move from zero to some positive value V when the scientist discovers p. Then at the conference, the value jumps from V to 21V. Then after publication it goes from 21V to 121V. Then given Youtube, it goes from 121V to 100121V. The jump at initial discovery is by far the smallest, and the biggest leap is when the discovery is publicized. This strikes me as wrong. The big leap in value is when p becomes known, which either happens when the scientist discovers it or when it is presented at the conference. The rest is valuable, but not so big in terms of the value of “human knowledge”.
No comments:
Post a Comment